Package: htetree 0.1.19

htetree: Causal Inference with Tree-Based Machine Learning Algorithms

Estimating heterogeneous treatment effects with tree-based machine learning algorithms and visualizing estimated results in flexible and presentation-ready ways. For more information, see Brand, Xu, Koch, and Geraldo (2021) <doi:10.1177/0081175021993503>. Our current package first started as a fork of the 'causalTree' package on 'GitHub' and we greatly appreciate the authors for their extremely useful and free package.

Authors:Jiahui Xu [cre, aut], Tanvi Shinkre [aut], Jennie Brand [aut]

htetree_0.1.19.tar.gz
htetree_0.1.19.zip(r-4.5)htetree_0.1.19.zip(r-4.4)htetree_0.1.19.zip(r-4.3)
htetree_0.1.19.tgz(r-4.4-x86_64)htetree_0.1.19.tgz(r-4.4-arm64)htetree_0.1.19.tgz(r-4.3-x86_64)htetree_0.1.19.tgz(r-4.3-arm64)
htetree_0.1.19.tar.gz(r-4.5-noble)htetree_0.1.19.tar.gz(r-4.4-noble)
htetree_0.1.19.tgz(r-4.4-emscripten)htetree_0.1.19.tgz(r-4.3-emscripten)
htetree.pdf |htetree.html
htetree/json (API)

# Install 'htetree' in R:
install.packages('htetree', repos = c('https://jiahuixu1.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Datasets:

On CRAN:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

1.30 score 8 scripts 263 downloads 40 exports 60 dependencies

Last updated 24 days agofrom:48b4556399. Checks:OK: 9. Indexed: yes.

TargetResultDate
Doc / VignettesOKOct 14 2024
R-4.5-win-x86_64OKOct 14 2024
R-4.5-linux-x86_64OKOct 14 2024
R-4.4-win-x86_64OKOct 14 2024
R-4.4-mac-x86_64OKOct 14 2024
R-4.4-mac-aarch64OKOct 14 2024
R-4.3-win-x86_64OKOct 14 2024
R-4.3-mac-x86_64OKOct 14 2024
R-4.3-mac-aarch64OKOct 14 2024

Exports:bundScriptcausalForestcausalTreecausalTree.branchcausalTree.controlcausalTree.matrixcausalTreecallbackcausalTreecoclearTempest.causalTreeestimate.causalTreeformatggetDefaultPathgetDensitieshonest.causalTreehonest.est.causalTreehonest.est.rparttreehonest.rparttreehte_causalTreehte_foresthte_ipwhte_matchhte_plothte_plot_linehtetree.anovaimportanceinit.causalForestmakeplotsmatchinleavesmodel.frame.causalTreena.causalTreeplotOutcomespredict.causalForestrunDynamicsaveBCSSsaveFilessaveGCSSsaveIndsaveServsaveUI

Dependencies:base64encbslibcachemclicommonmarkcrayondata.treeDiceKrigingdigestdplyrfansifastmapfontawesomeFormulafsgenericsgluegrfhtmltoolshttpuvinumjquerylibjsonlitelaterlatticelibcoinlifecyclelmtestmagrittrMASSMatchingMatrixmemoisemimemvtnormpartykitpillarpkgconfigpromisesR6rappdirsRcppRcppEigenrlangrpartrpart.plotsandwichsassshinysourcetoolsstringistringrsurvivaltibbletidyselectutf8vctrswithrxtablezoo

Readme and manuals

Help Manual

Help pageTopics
Include the Javascript Used in ShinybundScript
Causal Effect Regression and Estimation TreescausalTree
Compute the "branches" to be drawn for an 'causalTree' objectcausalTree.branch
Intermediate function for 'causalTree'causalTree.control
Intermediate function for 'causalTree'causalTree.matrix
Intermediate function for 'causalTree'causalTreecallback
Intermediate function for 'causalTree'causalTreeco
Clear Temporary FilesclearTemp
Intermediate function for 'causalTree'est.causalTree
estimate causal Treeestimate.causalTree
Intermediate function for 'causalTree'formatg
Get the Current Working DirectorygetDefaultPath
Getting Distribution in Treatment and Control GroupsgetDensities
Causal Effect Regression and Estimation Trees: One-step honest estimationhonest.causalTree
honest re-estimation and change the frame of object using estimation samplehonest.est.causalTree
honest re-estimation and change the frame of object using estimation samplehonest.est.rparttree
Honest recursive partitioning Treehonest.rparttree
Estimate Heterogeneous Treatment Effect via Causal Treehte_causalTree
Estimate Heterogeneous Treatment Effect via Random Foresthte_forest
Estimate Heterogeneous Treatment Effect via Adjusted Causal Treehte_ipw
Estimate Heterogeneous Treatment Effect via Adjusted Causal Treehte_match
Visualize the Estimated Resultshte_plot
Visualize the Estimated Resultshte_plot_line
Intermediate function for 'causalTree'htetree.anova
Caclulate variable importanceimportance
Causal Effect Regression and Estimation Forests (Tree Ensembles)causalForest init.causalForest predict.causalForest
Visualize Causal Tree and the Estimated Resultsmakeplots
NN Matching in Leavesmatchinleaves
Intermediate function for 'causalTree'model.frame.causalTree
Intermediate function for 'causalTree'na.causalTree
Intermediate function for 'hte_plot_line'plotOutcomes
Visualize Causal Tree and Treatment Effects via ShinyrunDynamic
Save Javascript Embedded in Shiny AppsaveBCSS
Save Necessary Files to Run Shiny AppsaveFiles
Save CSS File Embedded in Shiny AppsaveGCSS
Save HTML Index Embedded in Shiny AppsaveInd
Save Shiny Server TemporarilysaveServ
Save Shiny UI TemporarilysaveUI
A Simulated Datasetsimulation.1